ChemistNate
  • Home / Ask Me Stuff
  • Free Lessons
    • Thermodynamics >
      • Thermochemistry Worksheet + Answers
      • First Law of Thermodynamics
      • Pressure-Volume Work
      • Enthalpy
      • Hess' Law
      • Enthalpy of Formation
      • Heat Capacity
      • Calorimetry
      • Entropy
      • Third Law of Thermodynamics
      • Spontaneity: Gibbs Free Energy
      • Second Law of Thermodynamics
      • Spontaneity at Different Temperatures
    • Electrochemistry >
      • Redox Reactions
      • Introduction to Half-Reactions
      • Calculating Oxidation Number
      • Has a Redox Reaction Occurred?
      • How to Balance Redox Reactions (Acidic Solution)
      • How to Balance Redox Reactions (Basic Solution)
      • Galvanic Cells
      • Standard Reduction Potentials
      • Electrolytic Cells
      • Nernst Equation
    • Kinetics >
      • Introduction
      • Relative Rates of Reaction
      • Rate Laws
      • Zero-Order Reactions
      • First-Order Reactions
      • Second-Order Reactions
      • Half-Life Expressions
      • Arrhenius Equation
      • How Long will it Take to Decay?
      • What Order is this Reaction?
      • Find the Rate Constant
    • Gases >
      • Pressure, Volume, Temperature
      • Ideal Gas Law
      • Density of Gases
      • Ideal Gas Law and Changes in P, V, T
      • Kinetic Molecular Theory
      • van der Waals' Equation for Non-Ideal Gases
      • Partial Pressures
      • Kinetic Energy and Temperature
    • Equilibrium >
      • Writing Equilibrium Expressions
      • Le Chatelier's Principle
    • Acids and Bases >
      • Acids and Bases Worksheet + Answers
      • Arrhenius vs Bronsted-Lowry vs Lewis Acids
      • Solve Titration Questions
    • Intermolecular Forces >
      • Phase Diagrams
      • Phase Changes
      • Intermolecular Forces
      • Effects of Intermolecular Forces
      • Ranking by Boiling/Melting Point
      • Clausius-Clapeyron Equation
      • Heating Curves
    • Solids >
      • Ionic/Metallic/Covalent
      • Symmetry of Solids
      • Simple Cubic, fcc and bcc
      • How to Find Edge Length
    • Organic Reactions >
      • Br2 + Alkene (Adding across a double bond)
      • HCl + Alkene (Adding across a double bond)
      • Reaction of OH with Alkyl Halide
      • What is Regioselectivity?
      • Stability of Carbocations
    • Moles and Mass >
      • Average Atomic Mass
      • Solve for Isotopic Abundance
      • Limiting Reagents
      • Percent Yield
      • Actual Yield and Percentage Yield
      • Percent Composition
    • Atomic Structure >
      • What's in an Atom?
      • Quantum Numbers
      • Pauli, Aufbau, Hund
      • Light: E h ν λ
      • Energy Levels of Hydrogen
      • Energy Levels of Non-Hydrogen Atoms
    • Organic Naming >
      • Naming Organic Molecules
      • How to Name Amines
      • How to Name Amides
    • Lewis Structures
  • Privacy Policy
  • Free Help on Discord
  • Home / Ask Me Stuff
  • Free Lessons
    • Thermodynamics >
      • Thermochemistry Worksheet + Answers
      • First Law of Thermodynamics
      • Pressure-Volume Work
      • Enthalpy
      • Hess' Law
      • Enthalpy of Formation
      • Heat Capacity
      • Calorimetry
      • Entropy
      • Third Law of Thermodynamics
      • Spontaneity: Gibbs Free Energy
      • Second Law of Thermodynamics
      • Spontaneity at Different Temperatures
    • Electrochemistry >
      • Redox Reactions
      • Introduction to Half-Reactions
      • Calculating Oxidation Number
      • Has a Redox Reaction Occurred?
      • How to Balance Redox Reactions (Acidic Solution)
      • How to Balance Redox Reactions (Basic Solution)
      • Galvanic Cells
      • Standard Reduction Potentials
      • Electrolytic Cells
      • Nernst Equation
    • Kinetics >
      • Introduction
      • Relative Rates of Reaction
      • Rate Laws
      • Zero-Order Reactions
      • First-Order Reactions
      • Second-Order Reactions
      • Half-Life Expressions
      • Arrhenius Equation
      • How Long will it Take to Decay?
      • What Order is this Reaction?
      • Find the Rate Constant
    • Gases >
      • Pressure, Volume, Temperature
      • Ideal Gas Law
      • Density of Gases
      • Ideal Gas Law and Changes in P, V, T
      • Kinetic Molecular Theory
      • van der Waals' Equation for Non-Ideal Gases
      • Partial Pressures
      • Kinetic Energy and Temperature
    • Equilibrium >
      • Writing Equilibrium Expressions
      • Le Chatelier's Principle
    • Acids and Bases >
      • Acids and Bases Worksheet + Answers
      • Arrhenius vs Bronsted-Lowry vs Lewis Acids
      • Solve Titration Questions
    • Intermolecular Forces >
      • Phase Diagrams
      • Phase Changes
      • Intermolecular Forces
      • Effects of Intermolecular Forces
      • Ranking by Boiling/Melting Point
      • Clausius-Clapeyron Equation
      • Heating Curves
    • Solids >
      • Ionic/Metallic/Covalent
      • Symmetry of Solids
      • Simple Cubic, fcc and bcc
      • How to Find Edge Length
    • Organic Reactions >
      • Br2 + Alkene (Adding across a double bond)
      • HCl + Alkene (Adding across a double bond)
      • Reaction of OH with Alkyl Halide
      • What is Regioselectivity?
      • Stability of Carbocations
    • Moles and Mass >
      • Average Atomic Mass
      • Solve for Isotopic Abundance
      • Limiting Reagents
      • Percent Yield
      • Actual Yield and Percentage Yield
      • Percent Composition
    • Atomic Structure >
      • What's in an Atom?
      • Quantum Numbers
      • Pauli, Aufbau, Hund
      • Light: E h ν λ
      • Energy Levels of Hydrogen
      • Energy Levels of Non-Hydrogen Atoms
    • Organic Naming >
      • Naming Organic Molecules
      • How to Name Amines
      • How to Name Amides
    • Lewis Structures
  • Privacy Policy
  • Free Help on Discord

Electrolytic Cells


Galvanic cells have Eºcell positive – they go in whatever direction is natural for them.

Electrolytic cells have Eºcell negative – they are forced to go backwards using a battery or some other source of electricity.

Electrolytic cells are, basically, galvanic cells that are forced to go in reverse.

Recall the reaction and Eºcell from the galvanic cell example:
Picture
If the reaction is allowed to go naturally, Cl2 will be consumed, Br2 will be produced, and 0.292 V of potential difference will be produced between the two beakers.

OR, we could create an electrolytic cell, and APPLY a voltage of 0.292 V (or more). This would force the reaction to go backwards, so we'll consume Br2 and produce Cl2.

Note: oxidation still occurs at the “anode” and reduction still occurs at the “cathode” ... but now the anode and cathode have switched!
Powered by Create your own unique website with customizable templates.