ChemistNate
  • Home / Ask Me Stuff
  • Free Lessons
    • Thermodynamics >
      • Thermochemistry Worksheet + Answers
      • First Law of Thermodynamics
      • Pressure-Volume Work
      • Enthalpy
      • Hess' Law
      • Enthalpy of Formation
      • Heat Capacity
      • Calorimetry
      • Entropy
      • Third Law of Thermodynamics
      • Spontaneity: Gibbs Free Energy
      • Second Law of Thermodynamics
      • Spontaneity at Different Temperatures
    • Electrochemistry >
      • Redox Reactions
      • Introduction to Half-Reactions
      • Calculating Oxidation Number
      • Has a Redox Reaction Occurred?
      • How to Balance Redox Reactions (Acidic Solution)
      • How to Balance Redox Reactions (Basic Solution)
      • Galvanic Cells
      • Standard Reduction Potentials
      • Electrolytic Cells
      • Nernst Equation
    • Kinetics >
      • Introduction
      • Relative Rates of Reaction
      • Rate Laws
      • Zero-Order Reactions
      • First-Order Reactions
      • Second-Order Reactions
      • Half-Life Expressions
      • Arrhenius Equation
      • How Long will it Take to Decay?
      • What Order is this Reaction?
      • Find the Rate Constant
    • Gases >
      • Pressure, Volume, Temperature
      • Ideal Gas Law
      • Density of Gases
      • Ideal Gas Law and Changes in P, V, T
      • Kinetic Molecular Theory
      • van der Waals' Equation for Non-Ideal Gases
      • Partial Pressures
      • Kinetic Energy and Temperature
    • Equilibrium >
      • Writing Equilibrium Expressions
      • Le Chatelier's Principle
    • Acids and Bases >
      • Acids and Bases Worksheet + Answers
      • Arrhenius vs Bronsted-Lowry vs Lewis Acids
      • Solve Titration Questions
    • Intermolecular Forces >
      • Phase Diagrams
      • Phase Changes
      • Intermolecular Forces
      • Effects of Intermolecular Forces
      • Ranking by Boiling/Melting Point
      • Clausius-Clapeyron Equation
      • Heating Curves
    • Solids >
      • Ionic/Metallic/Covalent
      • Symmetry of Solids
      • Simple Cubic, fcc and bcc
      • How to Find Edge Length
    • Organic Reactions >
      • Br2 + Alkene (Adding across a double bond)
      • HCl + Alkene (Adding across a double bond)
      • Reaction of OH with Alkyl Halide
      • What is Regioselectivity?
    • Moles and Mass >
      • Average Atomic Mass
      • Solve for Isotopic Abundance
      • Limiting Reagents
      • Percent Yield
      • Actual Yield and Percentage Yield
      • Percent Composition
    • Atomic Structure >
      • What's in an Atom?
      • Quantum Numbers
      • Pauli, Aufbau, Hund
      • Light: E h ν λ
      • Energy Levels of Hydrogen
      • Energy Levels of Non-Hydrogen Atoms
    • Organic Naming >
      • Naming Organic Molecules
      • How to Name Amines
      • How to Name Amides
    • Lewis Structures
  • Privacy Policy
  • Free Help on Discord
  • Home / Ask Me Stuff
  • Free Lessons
    • Thermodynamics >
      • Thermochemistry Worksheet + Answers
      • First Law of Thermodynamics
      • Pressure-Volume Work
      • Enthalpy
      • Hess' Law
      • Enthalpy of Formation
      • Heat Capacity
      • Calorimetry
      • Entropy
      • Third Law of Thermodynamics
      • Spontaneity: Gibbs Free Energy
      • Second Law of Thermodynamics
      • Spontaneity at Different Temperatures
    • Electrochemistry >
      • Redox Reactions
      • Introduction to Half-Reactions
      • Calculating Oxidation Number
      • Has a Redox Reaction Occurred?
      • How to Balance Redox Reactions (Acidic Solution)
      • How to Balance Redox Reactions (Basic Solution)
      • Galvanic Cells
      • Standard Reduction Potentials
      • Electrolytic Cells
      • Nernst Equation
    • Kinetics >
      • Introduction
      • Relative Rates of Reaction
      • Rate Laws
      • Zero-Order Reactions
      • First-Order Reactions
      • Second-Order Reactions
      • Half-Life Expressions
      • Arrhenius Equation
      • How Long will it Take to Decay?
      • What Order is this Reaction?
      • Find the Rate Constant
    • Gases >
      • Pressure, Volume, Temperature
      • Ideal Gas Law
      • Density of Gases
      • Ideal Gas Law and Changes in P, V, T
      • Kinetic Molecular Theory
      • van der Waals' Equation for Non-Ideal Gases
      • Partial Pressures
      • Kinetic Energy and Temperature
    • Equilibrium >
      • Writing Equilibrium Expressions
      • Le Chatelier's Principle
    • Acids and Bases >
      • Acids and Bases Worksheet + Answers
      • Arrhenius vs Bronsted-Lowry vs Lewis Acids
      • Solve Titration Questions
    • Intermolecular Forces >
      • Phase Diagrams
      • Phase Changes
      • Intermolecular Forces
      • Effects of Intermolecular Forces
      • Ranking by Boiling/Melting Point
      • Clausius-Clapeyron Equation
      • Heating Curves
    • Solids >
      • Ionic/Metallic/Covalent
      • Symmetry of Solids
      • Simple Cubic, fcc and bcc
      • How to Find Edge Length
    • Organic Reactions >
      • Br2 + Alkene (Adding across a double bond)
      • HCl + Alkene (Adding across a double bond)
      • Reaction of OH with Alkyl Halide
      • What is Regioselectivity?
    • Moles and Mass >
      • Average Atomic Mass
      • Solve for Isotopic Abundance
      • Limiting Reagents
      • Percent Yield
      • Actual Yield and Percentage Yield
      • Percent Composition
    • Atomic Structure >
      • What's in an Atom?
      • Quantum Numbers
      • Pauli, Aufbau, Hund
      • Light: E h ν λ
      • Energy Levels of Hydrogen
      • Energy Levels of Non-Hydrogen Atoms
    • Organic Naming >
      • Naming Organic Molecules
      • How to Name Amines
      • How to Name Amides
    • Lewis Structures
  • Privacy Policy
  • Free Help on Discord

Actual Yield and Percentage Yield


Remember how to calculate “How much CO2 and H2O is formed (in g) when 3 g of CH4 react with 5 g of O2? How much of each reactant is left?” The answer is “1.25 g of CO2, 3.4375 g of CO2 and 2.8125 g of H2O.”

We came up with these values from the limiting reagent lesson. If the reaction went 100% to completion (no more O2 left), then this is what would be created (these values are the theoretical yields, since they are only produced under the theory that the reaction would go to completion). But often, reactions don't go all the way. If we only consumed HALF the oxygen available, then we'd only create HALF these amounts of products (and only consume half the amount of CO2 as if the reaction went to completion). The amounts actually produced are called the actual (or experimental) yield. How close the reaction got to completion (as a percentage) is called the percentage yield.

Sample Question


Q: Let's say that only 1 g of water was collected. What is the percentage yield of the reaction?

A: 
Picture
Created by Nathan Oldridge (aka ChemistNATE).  All lessons here are Public Domain.